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Introduction

In this paper we consider the following optimal control prob-

lem. Consider a control system
(0.1) ¥ = £(t,y,u)

where f maps J XY XE into Y, J0 = [ao,bo] is an interval, and Y,E
are Euclidean spaces. By a solution of (0.1l) is meant a triple (J,y,u), where
J CZJO is an interval, y: J =Y is absolutely continuous, u: J —=E

is Lebesgue measurable, and J(t) = £(t,y(t),u(t)), u(t) € v(t,y(t))

almost everywhere (a.e.) in J. The control domain U is a map from

Jo X Y into subsets of E.

Besides the system (0.1), a "cost function"
(0.2) I(3,y,u) = [e(t,y(t),u(t))dt
is givenjvwhere (J,y,u) is a solution of (0.1) and g maps JoXYXE

into another Euclidean space X. An order "s" 1is given in X and with

respect to which the positive cone C is convex and closed and C-C

{x|x = ej-cy, c,e5 € C) = X,
The problem is to minimize I (with respect to the order in
X) 1in a given class Q of solutions of (O.l). The class § may

be determined, for instance, by boundary conditions



y(ao) €A, y(bo) € B, where A ,B  are given fixed sets. Since
the order is in general, not total we are thus looking for minimal points

of I(Q) rather than an absolute minimum; that is we want to find

w* € @ such that for each w e @ the inequality, I(w) = I(w*)

implies I(w*) = I(w). Such an o* will be called an optimal solu-

This problem (of minimizing a vector-valued function rather
than a functional) has been formulated and discussed
and is of some interest in applications. For references we refer
the reader to the paper [2]. In +this paper the authors give
necessary conditions for an optimal solution.

In this paper we seek conditions on f,g,U and
2 which guarantee the existence of an optimal solution.

In a recent paper Lamberto Cesari [1] gave several theorems
of this nature for the case when X 1s one dimensional. In contrast
to preceding papers (cf. for example, Filippov [ 3], Marcus and Lee
[11], Roxin [15], WaZzewski [17]) non-compact control do-
mains U are considered in [1], which allows the author to give a

unified and very general existence theory applying to both the
Pontryagin optimal control problem as well as to the classical La-
grange problem in the calculus of variations. The present paper is
strongly inspired by Cesari's recent work and it presents some generali-
zations of the latter. The generalizations are two fold. On the
one hand we treat the problem with a vector-valued cost function

whereas Cesarl considered the scalar case. On the other hand




we are able to relax the regularity conditions on f,g and U.
To use an analogy from ordinary differential equations, the continuity
requirements are replaced by Carathébdory's type assumptions. For a more
detailed account of the relation between our results and those of
Cesari see Remark 2 of Section 3.

However the novelty of the paper lies perhaps more in the
approach than in the results themselves. In particular the author be-

lieves that the lemma of Section 1 is by itself of some interest.

To prove the existence of a minimal point of I(Q) one

shows first that the closure I(Q) has one. This gives a minimizing
sequence {ak} C Q@ and now one wants to connect with such a sequence
an element w* of Q such that I(w*) = 1lim l(wk) = a minimal point
of T(ﬁT. This 1s usually done by establ§s£1:g a certain compactness
property for { and continuity for I. For example, Filippov's
existence theorem [3,4] can be based upon the following fact (ef. [101]).
ASuppose 0 1is the set of absolutely continuous functions y: J =Y,
uniformly bounded on J (by a fixed constant) and such that J(t) €
P(t) a.e. in J, where P(t) 1is a convex and closed subset of Y and

max  |lpl is bounded by an integrable function. Then & is com-

p € P(t)

pact in the uniform convergence topology. The lemma of Section 1 is

a suitable extension of the above fact so that it applies also to the
noncompact case considered by Cesari. To be more specific, the

boundedness assumption on P, which can be equivalently expressed as

for each ¢ € Y there is an integrable @cn J - R such that




(0.3) max <c,p>=09,t) a.e. in J,

p € P(t)
is replaced in the lemma by the same condition but restricted to c
from an open convex cone. This allows P(t) to be unbounded but
only in certain directions. In this case Q 1s no longer compact
but still each sequence contains a convergent subsequence (pointwise,
not uniformly) to a function which is not in general absolutely con-
tinuous but is of bounded variation. The absolutely continuous part
of the limit belongs to § while the singular part has a certain
monotonicity property. This type of convergence appears also in the
Cesari's paper, but neitiher the Lemma nor a special case of it is
explicitly stated there.

We believe our approach is different and more geometric,
For instance the so called growth condition in the existence theorems
of the calculus of variations appearing alsec in [1] is replaced here
by a geometrical assumption expressed in terms of "the shape" of cer-
tain convex sets. Also, the proof of the lemma is based on a
characterization of convex closed set which does not contain a line
given in [7] and on some simple ideas used in [10’.

The optimal problem, described above is equivalent to an
optimization problem for a system with multivalued right-hand side or
in WaZewski's terminology [17] an orientor field. This latter prob-
lem is treated in section 2.

In section 3 we state and prove two existence theorems con-

cerning the original optimal problem described above. These results are




obtained as a combination of the results of section 2 and an appropriate

extension of the so called Filippov's implicit function lemma.

1. The principal lemma.

Relevant to our considerations is the role played by closed
convex sets which do not contain a line, and we begin by discussing

some of their properties.

The following characterization of such sets is contained
in [7], where a more general case of infinite dimensional linear

spaces is considered.

Proposition 1. Let Z be a finite dimensional Euclidean space and

P a proper subset of Z. Then the following two conditions are equivalent:

(i) P 1is closed, convex and does not centain a line.

(ii) For each dense subset D of Z the equality holds

(1.1) P=n{z <4, z> = sup<d,p >},
deD peP

where <, > 1is the scalar product in Z.
For our purpose we will need a modification of (ii). For
each subset P of Z define

(1.2) C.P= {a| p+» a € P for each peP and A z 0)

The set CP is not empty (always contains 0) and is a cone. Indeed,




it is clear by definition (1.2) that if a € C, and X 2 0 then

Aa € CP; thus xCP CiCP for each A > 0. The set CP is called

the asymptotic cone of P. If P 1is closed then CP is closed

and if P 1is convex then so is CP' Finally, if P is closed and

convex, the cone CP is proper (does not contain a line: CP N (-CP) = {0})

if and only if P does not contain a line.

Summing up we can state that for a closed convex set P

which does not contain a line the asymptotic cone CP is closed

convex and proper,

Consider now the polar C; of CP; that is, the set

(1.3) c2={ej]<c, a>=0 for each a € C

P P

Note that the supremum in the right-hand side of (1.1) can

be finite only if 4 € C;. Thus (1.1) still holds if we replace D

by DN C; or any dense subset of C Since in (ii) the relation

o
p*
(1.1) is supposed to hold for each dense D, it follows that if (ii) is
true then C; has a non-empty interior and D can be replaced in (1.1)
by DN int c;.

On the other hand if int C; is not empty and for each

dense D C7Z

(1.4) P= N (z| <d,z > = sup < d,p>)

deD N int cl°D peP )

then (1.1) holds. Indeed, for each D the set P is contained



in the right-hand side of (1.1) and the latter is contained in the
right-hand side of (1.4) and therefore is in P. Hence we have (1.1)

and have shown the following:

Proposition 1's If P 1is a proper subset of Z then

(1) is equivalent to

(it) c® has a nomempty interior and (1.4) holds for each dense sub-
P
set D of Z.

Note that if P satisfies (i) then max < d, p > exists for
. o peb
each d € int C°\ {0} and is finite. Indeed, the set

= =
Pﬁ,a =fz] <d,z>za} NP

is compact for each «o 1if g € int C;. If the set Pa o Were un-
2

bounded, there would exist an a #0 such that p+ia € P o
2

for each p € Pd,a and A > 0. Thus a ¢ CPd a(: CP' But <4,
b

a for each A >0 which implies that < d,a >z 0. The

1%

p+ia >
latter inequality contradicts the assumption that 4 € int cO\{0}.

Therefore Pd o is bounded, and since it is always closed, it 1is com-

b

pact, and the existence of max < d,p > follows, Hence in (1.4)
peP
Ysup! can be replaced by ‘'max'.

In which follows Z will be endowed with an order '£' such
that (Z,"=") form an ordered vector space and such that the positive

1"

cone C 1is closed and convex. (Note that the same is used to

denote the usual inequality between scalars.)



Let X = C-C = {z|z = ¢j-¢,, cj,c, € C}. The set X is a

closed subspace of Z. By Y we denote the orthogonal complement

of X. 1In particular, either X or Y can be zero dimensional. In other
words, we do not exclude C = {0} or C-C = Z. Of course, Z 1is the
direct sum of X and Y and therefore each 2z € Z can be uniquely repre-
sented as the sum x+y where x € X and y € Y. If a letter other than

Z

, say c¢, 1s used to denote a point in Z, then . and cy will stand for

the unique components of ¢ in X and Y respectively.

Now we can state our basic lemma.

Lemma. Let P be a map of an interval J = [a,b] into closed con-

vex subsets of Z. Assume that
(1.5) CP(t) =C for each t e J

and that for each c¢ ¢ int Co\{O} there is an integrable P, J - R

such that

(1.6) max <c, p>= @c(t),
pep(t)

where Co is the polar of C.
Let Zy ¢ J = Z Dbe absolutely continuous and uniformly
bounded on J, k = 1,2,... . Assume that for each k

2

(1.7) ék(t) € P(t) a. e. in J.




Under these assumptions there is a subsequence zk s
1

i=1,2,... converging everywhere in J to a function z+v, where:

1 Z 1is absolutely continuous and
(1.8) z(t) € P(t) a. e. in J.

2 v 1is singular and increasing, that is,

(1.9) V(t) =0 a.e. in J and v(s) = v(t) if s = t.
3% 1r Yy (t) denotes the Y-component of 2y (t), then
i i
(1.10) Vi (t) » y(t) wuniformly in J
i

where y(t) 4is the Y-component of z(t).
The proof of the lemma will be preceded by a proposition,

which essentially is the one dimensional counterpart of the lemma.

Proposition 2. Let ak' J - R Dbe absolutely continuous and uniformly

bounded, k = 1,2,... . Assume that

(1.11) & (t) = Mt) s o(t) a.e. in J

where @ 1s integrable.

Then there exists a subsequence {ak } converging everywhere
i
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to a function o+f, where ai J - R 1is absolutely continuous and

(1.12) a(t) = Mt) a.e. in J,

and f: J - R is singular and nonincreasing, that is

(1.13) B(t) =0 a.e. in J and PB(t)

1%
™
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Moreover, for each € >0 there is an i such that
o

(1.14)  B(b)-€

IA

a (£)-a(t) =p(a)«€ if iz i and t € J.
i

n

Proof. Put y(t) Sup ak(t) and 6k(t) = ak(t)-fZY(T)dT. By (1.11)

Wt) £ Mt) a.e. in J and y 1is integrable. Since [ak] is uni-

formly bounded, so is {Bk}. By definition the 8k are nonin-

creasing for each Kk, 5k(t) £ 0 a.e., in J for each k. Thus an

everywhere convergent subsequence (6k } can be chosen and the limit
i

function is also nonincreasing. As such, by the canonical decomposi-

tion theorem, it can be represented as the sum O+B, where © 1is ab-
solutely continuous,  1is singular and both are nonincreasing. Thus

the corresponding sequence [ak }
i

a(t) = 8(t) + fZY(T)dT. Hence « 1is absolutely continuous and &(t) =

converges everywhere to «a+3 where

8(t)+yr(t) = v(t) s Mt). Thus (1.12) and P satisfies (1.13).
To prove the second part of Proposition 2, taeke an € >0

and choose a partition a = to <t, <.+.ee<tg =b of J such that

1



[ S T T L L L L WS TN ey e

11

0 = S(tj)-S(tj+l) <€/2. Take i = so large that lski(tj)-
B(tj)-ﬁ(tj)l <eg/2 for iz i, and § = 0,1,...,s. These inequalities
Coit . s <t <
and monotonicity of SKi,S and B yield for 1 i, and tj t = tj+l
o (8)-a(t) = B (£)-5(t) = & (t,)-8(t,)+ €/2 = B(t,)se
i i i

s B(a)+€
and similarly

6kj(t)-8(t) z 6kj(tj+l)-6(tj+l) -g/2z B(t,,1)-€ 2 B(b)-€.

Hence (1l.14) follows, whick completes the proof.

Proof of the lemma. Let us take an arbitrary d € int c® and put

o (t) =< d,z,(t) > Because of (1.6) and (1.7) {« satisfies

)
the assumptions of Proposition 2 with A(t) = max <d,p > and

peP(t)
Q = wd. Therefore there exists a subsequence {zk } such that
i
(1.15) < d,zki(t) > a(t) + By(t), ted
where Qy is absolutely continuous,
(1.16) &y(t) £ max <d,p> a.e. in J,

peP(t)

Bd is singular and nonincreasing. Since int Co is not empty and open
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there is a basis {d,...,d } of Z contained in int C°. Mani-

festly there is a subsequence {zk } such that (1.15) and (1.16)
i
holds for each 4 = dj’ j=1,...,n. But {dl,...,dn} is a basis and

itself has to be convergent. Therefore the limit

hence the subseguence (zk }
z+v where z(t) and v(t)

i
function can be represented as a sum

are unique solutions of the following systems, respectively

< dj,z(t) > = adj(t), < dj,v(t) > = ij(t), J=1,...,n

and 2z 1is absolutely continuous and v 1is singular. Now since

we have a convergent subsequence, (1.15) holds for each 4 € int c®

and

ay(t) = <d,z(t) > , B4(t) =< a,v(t) > .

Clearly, Q4 is absolutely continuous and Bd is singular. Moreover by

Proposition 2 (1.16) holds and Bd is nonincreasing for each d € int c®

Hence
(1.17) <d,z(t) >= max <d4,p> a.e. in J
pep(t)
and
(1.18) < d,v(t)-v(s) >=0 if t <s.

Both (1.17) and (1.18) hold for each d € int c®. Wow assumption (1.5),
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and (1.17) yield (1.8) while (1.18) implies that v(t)-v(s) € C, that
is, second part of (1.9) holds.

To prove that the Y-component yk of Zy converges uniformly to
i i
the Y-component y of =z note that, if ¢ € int C° N X and 4 € Y, then

d+Ae € int ¢° for each A >0. This follows from (1.2) and the fact

that < d+rc, a > = A <c, a> if a € CCX, since Y 1is the or-

thogonal complement of X. Let [dl,...ds} be an orthonormal basis

in Y, and let c, @ fixed point of int C0 N X. Without loss of generality
we may assume that v(a) = 0. Then by (1.9) v(t) e CC X for each

t € J. Take an € >0 and choose A >0 such that for each 1 =

1’2,000
(1.19) A < e r¥ (£)-x(t) > | + A< ¢, v(P) >| <& tede
i

By (1.14) of Proposition 2, (1.19) and the equality

<dj + Xco,zki(t) > =< dj’yki(t) >+ A< Co:in(t) >

we obtain the inequality

(1.20) | < a5y (t)-y(t) >| £2 if teJ and 121,
i

It is clear that io can be choosen independently of J, since J
is from a finite set. Hence (1.20) implies uniform convergence of Vi

i
to y. Therefore the proof of the lemma is completed.



1k

In the next section we will be dealing with solutions of
generalized differential equations and they will not in general be de-
fined on the same interval. Thus for our purposes we need to extend
the lemma slightly.

Suppose a sequence 2 i J, = [ak’bk] -7, k=1,2,..., is

given, where the domain interval may change with k. We denote this

sequence by {zk’Jk]' Assume that J_CJ for each k

Definitionl. We say that {zk,Jk} converges as k -« to {ZO,JO},

g, = [ao’bo]’ pointwise (uniformly) if

a, —a b, -b as k - x

and the sequence {Ek} defined by

_ Zk(ak) a st sa
(1.21) ZK(t) = zk(t) a, £t K
Zk(bk) b £t

A
A
joal-

WA
A

2

converges pointwise (uniformly on J) to Zos where zO is a similar

extension of (ZO,JO).

Remark 1. The Lemma holds for the sequence J when

10
t) € P(t) a.e. in J, and

J, CJ, if (1.7) is replaced by 2, (

convergence in the conclusion is in the sense of the above

definition. In particular for the convergent subseguence [Zk ,Jk }
i i

we have
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(a, ,¥, (2, ) = (a_,¥(a))

(1.22)
(by 5y, (b )) = (b_,¥(b))
and
(1.23) X(bo)-x(ao) = 4in (xk.(bkg-xk.(ak.)).

To prove Remark 1 it is enough to notice that the modified
set valued function
P(t) if t e [a,+8, b_-5]

(1) =
cocl[{0} U P(t)] if t € I\[a_+5, b _-8]

(cocl stands for convex closure) satisfies all assumptions of the Lemma
if P(t) does and that the Lemma can be applied to the sequence

{;k} defined by (1.27). Since this can be done for each & > 0 and
since one chosen convergent subsequence is good for any other 39,

therefore we may reﬁiace & with zero and thus (1.7) holds on JO.

Now (1.22) follows from the uniform convergence of ;k, while (1.23) is a
i

~
consequence of the monotonicity of wv.

BSEEEEj%- If in the above we assume that Xk(ak) = 0, then

;k(t) =0 if t e [ao,ak] for each k and thus also the x-part of
the limit function x(t) + v(t) =0 if a £t < a,. Hence fixing
v(a) = 0 we conclude by continuity of X that g(ao) = 0. Hence

the 1limit function satisfies the same initial condition.
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Remark 3. If C = {0} then Z =Y and we have the case discussed

in the introduction: any bounded sequence contains a uniformly con-
vergent subsequence. This special case of the lemma is given in

[10) (cf. also [4] and [14]). Perhaps it is worthwhile to point out

that the set valued function P can be eliminated from both the as-
sumptions and the conclusion of the Lemma. In other words if we as-

sume that a sequence {zk} of absolutely continuous functions 1is

bounded and for each ¢ ¢ int c® < c,ék(t) > 1is bounded by an integrable
function independent of k, then the conclusion of the lemma remains valid

with (1.8) deleted.

Remark 4. If the sequence {Zk] in the Lemma converges pointwise

to an absolutely continuous function then the convergence is uni-

form. 1Indeed, if in Proposition 2 the singular part p 1is zero,

then by (1.1k) o - a(t) uniformly Thus under our assumption

Bd(t) =0 in (1.15) and the convergence is uniform for each d ¢ int C°.

Hence the singular part v has to be equal to zero and 2z (t) - z(%t)

n
uniformly. In fact the same statement could be proved if the limit
function is continuous (the singular part is continuous). For that
purpose part (l.lh) of Proposition 2 should be changed.

The above discussion brings to mind the classical Dini
theorem. 1In fact Proposition 2 is a combination of Helly's theorem

and (1.14) is "almost" the Dini theorem. Therefore our Lemma could be

considered as generalization of those two results.

Finally let us mention that the integrability of functions o
¢

is not essential for the validity of this remark.
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Indeed as foliows from Theorem I of [10] amd Proposition

1' it is enough to assume that md is locally integrable; that_is,
for almost all t € J there is a neighborhood of t on which P3
is integrable. However the lemma itself is no longer true if @d

is not integrable.

2. Existence theorems for orientor fields.

4

Consider a map Q: J_ X Z -2 (2Z stands for the set of all

subsets of Z). The following expression

(2.1) Z € Q(t,z)

is called an orientor field or a differential equation with multi-

valued right-hand side. By a solution of (2.1) we will mean a pair

(J,z) where J = [a,b] CI, is an interval, ; 1is an absolutely con-
tinuous function from J into Z and (2.1) is satisfied a.e. in
Jy that is, z(t) € Q(t,z(t)) a.e. in J.

The optimal problem we described in the introduction can
be reduced to the following optimization problem for (2.1). As before
let C be a closed, convex and proper cone in Z, X = C-C and
let Y be the orthogonal complement of X. For any solution w =

(J,z) of (2.1) define

(2.2) I(J,z) = x(b)-x(a),
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where x(t) denotes the X component of z(t).
The problem in gquestion is to minimize I in a given
class 0 of solutions of (2.1). More precisely we want conditions
which will imply for a given Q the existence of an optimal solution;
that is, an w* € @ such that for each w € § the inequality
I(w) s I(w*) implies I(w*) = I(w), where the order is that induced by
the cone C.
Naturally § cannot be arbitrary and we impose upon &
the following conditions. Since the condition which follows are
different for the Y and X parts of the solution, we shall in future
denote a solution by (J,x,y) and mean that x: J =»X, y: J »Y are
both absolutely continuous and that z(t) = x(t)+y(t) satisfies (2.1)
on J. Recall that J = [a,b].
(1) If (J,x,y) € @ then x(a) =0
(11) 1If (J,x,y) €@, (J,%,y) is a solution of (2.1) and X(a) = 0,
then (J,X%,y) € Q.

(I1I1) It (J Y eQ, k=1,2,..., (Jo,xo,yo) is a solution of

k2 ¥k Vi
(2.1), (Jk’yk) —a(Jo,yo) uniformly (cf. Definition 1) and if

X (0) = o} then (J ,yo) € Q.

,X

Q7 O

(IVa) There is a constant M >0 such that |ly(t)|| £ M for each (J,x,y) € @
and for each t ¢ J

(IVb) There is a constant M > 0 with the property that for each (J,x,y) € Q

there is t € J such that [y(t)||

A

M.
The above restrictions on § are motivated by applications. 1In

fact the y part of 2z will be a solution of system (0.1l) while
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x(b) is the value of (0.2). Condition (III) is replaced in more con-
crete cases by a boundary value type conditiony for example, the end
points (a,y(a)) and (b,y(b)) are tied to a compact sets. In this
case (IVb) will automatically be satisfied. We face condition (IVa)
for example, when we are restricted to solutions of (0.1l) whose

gfaphs are in a compact set. For simplicity we shall call

a class Q admissible if (I), (II), (III) and (IVb) hold and bounded

admissible if (IVb) is replaced by (IVa).

The two theorems which follow give sufficient conditions for

the existence of an optimal element in a bounded admissible § and an

admissible Q, respectively.

Below, by an upper semicontinuous (u.s.c.) map Q: Y —>2Z

(Y,Z-topological spaces in general) we mean simply that the graph of Q
in ¥ X Z 1is closed (cf. Kuratowski [8]). In particular, the

map Q in (2.1) is u.s.c. in z for each fixed t if for any

2, =2z, ang q —>q  such that g ¢ Q(t,zk) we can conclude that

q, € Q(t,zo). If Q@ is u.s.c.,then values of @ are closed sets.

Theorem 1, Assume that Q in (2.1) is u.s.c. in 2z for each fixed
t, values of Q are convex sets, and the asymptotic cone of Q(t,z)
is constant and equalto C; that is

2, = = .
(2.3) CQ(t,z) C = const

In addition assume that
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(2.1) a(t,z) C q(t,z) if Z =z

and that for each d e int Co and positive r there exist an inte-

grable wd(t,r) such that

(2.5) max <d, g > =0o_(t,r) if |yl = r
d
q e Qt,z)

where y 1is the Y-component of z.

Under these assumptions any bounded admissible class Q
contains an optimal element.

If condition (IVa) for Q is replaced by the weaker con-
dition (IVb) then the conclusion is still true provided some ad-

ditional restriction on Pq in (2.4) are imposed. Namely, we have

the following:

Theorem 2. Let @ in (2.1) satisfy all the assumptions of Theorem 1.
In addition assume there is ¢ € (int CO) N X such that one of
the following conditions holds:
(A) The function @c(t,r) in (2.5) does not depend on r and there
is an n >0 such that for each d € Y, {{d] = 1 the function
.

is linear in r.
¢d+nc

(B) The function wc(t,r) as well as @nc+d are linear in r for

each d €Y, [ld =1 and n e (0,n]), n, >0, and if

P (t,r) =0 (t) + ry t), then

ne+d ne+d nc+d(
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(2.6) Vrosg(t) =m <o if |ldll =1, n e (0,n_].

/
JO ne+d

Then any admissible class § of solutions of (2.1) contains an op-

timal element.

Remark 1. In applications of these theorems to the problem discussed
in the introduction, condition (2.4) is automatically satisfied

since the set valued function is independent of "x" and depends only
on |lyl. Thus a(t,z) = q(t,z) for any Z < z.

Before preoving theorems 1 and 2 we show the following:

Proposition 3. Assume that the map Q: Z —>2Z is u.s.e., the values of @

are convex subsets of Z, the asymptotic cone = C = const.

C
Qt,z)
-and that for each r» >0 and d ¢ int CO

(2.7) sup <4, g > is finite

sup
Izl <rqeq(z)
Then the map Q has the following property (property (Q) of Cesari

[11):

(2.8) Q(zo) =Ncoecl U Q(z).

>0 I z_zon sr

Proof. Let us select r, and z, 8o that HZOH < ro. It is clear that

the left-hand side of (2.8) is contained in the right-hand side. To

prove the opposite take q_ ¢ Q(zo). Since C 1is assumed to be the

asymptotic cone of Q(zo) it follows from Propositiom 1' that there is a
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a € int c® and an € >0 such that

(2.9) max <d,a><<d,q > -€
q € Q(z,)

On the other hand for the same reasons

(2.10) Q(z) n {q < d, a>2<d ,z >-€}

is compact for each z whose norm is bounded by roe We want to

show that (2.10) is empty if ”z-on < Ty and ry is small enough.

Suppose the contrary. Then there would exist sequences %l-a z,

and q € Q(z,) such that
<d_,a, >-o7172z2< do’zo >-8

If q, were convergent or contained a convergent subsequence, then
we would have a contradiction with upper semicontinuity of Q be-
cause of (2.9). Therefore anH »®, But in that case, since C°
has no empty interiog there exists d, € int CO such that 1im sup
< d4,q, > is infinite which contradicts (2.7). Hence there is an
ry > 0 such that for Hz-zOH < ry
shows that 2 = does not belong to the right-hand side of (2.8)

the set (2.10) is empty which

and completes the proof.

Remark 3. Note that under the assumptions of Proposition 2 the function
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sup <d, ¢ > 1s u.s.c. in 2z for each d in int ¢®. This is
qeQq(z) :
an immediate consequence of (2.8). Note also that it suffices to
assume (2.7) for d from any fixed dense subset D of int c®. The

last remark and Proposition 3 gives the following.

Corollary. If Q: J X Z - Z satisfies the assumptions of Theorem 1, then
there is a subset N C J of measure zero such that Q(t,z) has
property (2.8) in =z if t e J\N.

Indeed, fixing a denumerable dense subset D of int e®
and a sequence r, o, there is a set N of measure zero such that
@d(t,r) is finite if t € J\N,r € {rn) and d € D. Hence (2.7)

holds for any fixed t from J\N.

Proof of Theorem 1. Let Q. CQ be such that I(Q

1 is totally

1)

ordered by "=". By Kuratowski-Zorn lemma theorem 1 will be proved

if we show that for each such i, there is ®e Q& such that I(w) =

I(w) for each w € Q.

Let p e I(Ql) be arbitrary. Since I(Q is totally

1)

ordered,
(2.11) I(Ql) Cyp+(CU (-C)),
In particular, if we take an arbitrary d e int CO\{O} and

denote by w(d ,p) the hyperplane passing through p perpendicular

to d, then because of (2.11)
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(2.12) I(a,) nr(d,p) = {p}.

The latter holds for each p € I(Ql). Thus we can conclude that

I(Ql) is a graph of a map from a subset of the line ({z|z = \d, A € R}
into the subspace {xl < x,d > =0} of X. Moreover because of (2.11)
and the closedness of C +the map in question satisfies a Lipschitz
condition and therefore is continuous. Thus also the closure IZQli

is a totally ordered set, since it is again a graph of a Lipschitzian
map. On the other hand by (2.5) and the integrability of md(-,M)

we have

(2.13) sup <d, p>s [_o¢. (1,M)a1 < +»
2 J d )
peI(Ql) 0

where M in the constant in (IVa). Therefore we can conclude that

there is p_ € cl(I(Ql)) such that p_ = p for each p € I(Ql).

Now to complete the proof we need to show that there is

Dy € I(Q) such that p, £ p. Here is where the lemma is needed. Let

(J ) € Q, and be such that

Kk ¥k Tk

1
(2.1k4) I(Jk’xk’yk) = xk(bk) ->p, as k-=x.
Put 2y = xk+yk and
(2.15) P(t) = coecl U Q(t,zk(t)),

keK(t)
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where K(t) = (x|t ¢ Jk}. In this way (2.15) defines a set valued map
on U Jk whose values are convex closed sets. It is a simple matter
to check that the sequence {Zk] and the map P satisfies all as-
sumptions of the lemma. Therefore the latter together with Remark

1 and 2 of section 1 imply that there exists a subsequence(for simpli-
city still denoted by (Jk’xk’yk)) converging pointwise to (J,,x +v,y,)
and such that v(t) = 0,

(2.16) z,(t) = x,(t) + y,(t) € P(t) a.e. in J, = [aysbyl,

(2.17) (Jk’yk) - (J,,Y,) uniformly,

(2.18) x,(a,) =0,
and
(2.19) x,(b,) = I(J,,z,) = p, = lim Xk(bk)'

k —

To finish the proof it is sufficient now to prove that (J*,z*)

is a solution of (2.1) belonging to . The latter is a consequence
of (2.17), (2.18) and condition (III) provided (J,,z,) is a solution

of (2.1). This we will prove now. For that purpose define

Pj(t) = cocl keLIJ{(t)Q(t, zk(t))
k Z

For exactly the same reason as above we have




26
(2.16j) z,(t) € PJ.(t) a.e. in J,, J = 1,2,...
The Corollary to Proposition 3, (2.163), assumption (2.3), the point-

wise convergence of (Jk’zk) to (J,,z,+v) and the monotonicity of

v yield

(2.20) 2(8) € 0 Py(Y) = Qlt,2,(8)ev(8)) © alt,2,(+))
J:

for almost all +t e€J,. Therefore (J,,z,) is a solution of (2.1)

and the proof of Theorem 1 is completed.

Proof of Theorem 2. Let us take an arbitrary o = (J,X%,y) € Q

and put

o, ={we Q I(w) = I(w)].

It is clear that any minimal point of I(QO) is also a minimal
point of I(Q). Thus it is enough to prove the existence of an optimal
element in QO. We will do this by proving that Qo satisfies con-
dition (IVa) and thus reduce the proof to Theorem l.

For that purpose let o = (J,x,y) € @, Dbe arbitrary but

fixed (J = [a,b]). Denote by

(2.21) B(t) = lly(e)l| and ot) = < e,x(t) >,
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where ¢ 1is the fixed point of (int CO\[O}) N X in conditions (A)
and (B). Notice that for each d €Y and any 71 >0, ne+d € int c®.
Suppose for some n >0 and each d € Y, Hd“ = 1 the function in
the right-hand side of (2.5) is of the form q>d+nc(t) + rdenc.
Using the orthogonality of X and Y we get

(2.22) <,5(8) >+ nalt) S0, (£) + B8, (%)

d+ne

Since inboth conditions (A) and (B) Qc(t,r) is assumed to be linear,

we may replace it ¢C(t) + rwc(t) and the analog of (2.22) for

d =0, n=1 holds:
(2.23) a(t) = @c(t) + B(t)wc(t)

Since (2.22) holds for both d and -d, it holds also
with <d, J(t) > replaced by its absolute value with obvious changes
on the right-hand side. Therefore if dl,...,dn is an orthonormal

basis in Y we can deduce from (2.22) the following inequality

(2.24)

1A

y(e)|| + na(t) Kn(t) + un{t)ﬁ(t), a.e. in J
where hn(t) = max[@di+nc(t), @_di+nc(t)}, un(t) = max

1=isn
(v t), ¥ t and thus both are integrable on J.
d.+ne 4
i

-di+nc

Since (J,x,y) € & CQ, we have by (I) and (2.21) that
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a(0) = 0 and from definition of Q_  we get
(2.25) a(b) = < c,x(b) >z < e,x(b) > = N,

Moreover (IVb) implies that there is a t_ e J such that

(2.26) 0 =p(t) =M,

Taking into account the inequality |B(t)| s [|§(t)]| and (2.26)

we get from (2.24) if t z t_ ‘that
t t t
(2.27') p(t) = exp( [, u (T)dr)[Mef, (-n&(7)+A (7))exp(-[; w (s)ds)ar]
o o 1 o

and if t = to that

A " t T
(2.27") B(t) = exp(-[ un('f)d'f)[M+fJC (n&(7)-A () )exn( [y u (s)ds)dr]
o o o

Since kn and un are nonnegative, we can using (2.27') and (2.27")

estimate B(t) as follows:
(2.28) B(t) = exp(prn(T)dT)(M+an+N2) ted,

where N, = -fJOS_(T)dT, 5 (t) = min (0,&(t)) eand N, = fan(r)dr.

On the other hand putting 6+(t) = max (0,&(t)) we obtain by (2.25)
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(2.29) a(b) = fJ6+(T)dT+fJ6-(T)dT > NO

and because of (2.23%)

(2.30) fJ6+(T)dT < fj$C(T)dT+fT6(T)WC(T)dT.

If (A) holds, then in (2.30) Y, =0 eand thus N, is

bounded by a constant depending only on N_ and 9_. But (2.22)

holds for some 1 > 0, and therefore (2.28) is valid and it implies bound-

edness of B(t) by a constant which does not depend on € QO Hence

Q_ satisfies condition (1va).

If (B) holds, then (2.28) can be used for 17 € (O,no],
N, > 0 and it is easy to see that (2.6) implies the analogous condi-

tion for pn. Hence we have

A

/5 un(T)dT

] m < 4o if 7 e (O’no])

and this plus (2.28)-(2.30) yield

m
o]
N, < fJ6+(T)dT—NO < fjpc(T)dT+e (M+an+N2){Fc(T)dT-NO‘

This in turn shows that if 7 >0 1is small enough then Nl can be

estimated by a constant depending only on 1 and ¢ but not on a particular

element of Q_. Thus again satisfies condition (IVa). There-

fore in both cases we can apply Theorem 1 to QO and this completes
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the proof of Theorem 2.

Example 1. In order to illustrate Theorem 1 and Theorem 2 and the
difference between them let us consider a very simple example in
which both X and Y are one dimensional. Then Z 1is a plane,
C=((xy) ez xz0,y =0} c® = {(x,y)] x =0,

y arbitraryh and suppose J_ = [0,1]. As Q(t,z) we take the set

valued function depending only on y and given by

%

2
(2.31)  ae,y) = {a = (a9 )] a, = alt,¥)d; + B(t,y)a,+ v(t,0)],
so that condition (2.4) is automatically satisfied (cf. Remark 1).
The set (2.31) is convex provided aft,y) 2 0 and wu.s.c. in y if

a,B,y are continuous in y. The asymptotic cone is equal to

C
a(t,y)

C if and only if oa(t,y) > 0. It is clear that it is enough to as-
sume o(t,y) » 0 for each (t,y) € (J\N) XY where N is a set

of measure zero. Now the maximum in (2.5) can easily be calculated

and is equal (for (-n, ¥ d) € int ¢°) to
- \2
(2.32)  (nB(t,y) + a) /hna(t,y) - n8(t,y).

Now assumption (2.5) says in this case that (2.32) is bounded on each
compact subset of Y by an integrable function of t depending on
n and d.

Theorem 1 deals with the case when § 1is bounded (con-

dition(Iva)) and that is why we are interested in having a bound
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for (2.32) on compact subsets of Y only. One may say that in the

case of Theorem 1 we assume (almost explicitly) two facts: 1°

the inf x(b) for (J,x,y) € @ is finite and 2° it can be ap-
proached by a sequence with uniformly bounded y-components.
In the example we consider the additional assumption (A)

of Theorem 2 is expressed by two inequalities

(2.33) | B5(6,7)/4a(t,7) - 1(t,y) = uo(t) if ye¥

and for some 1 >0

(238 (B(t,y) 5 1 bna(t,5) - nrt,y) = () - [vn(8),

where uo,un, and Xn are integrable. ©So in this case we still
assume 1° (inequality (2.33)) but not 2° since O is assumed to sat-
isfy only (IVb). This is also the reason why (2.%3) is assumed to
hold for all y. Finally in the case (B) condition (2.3%) is relaxed
by allowing on the right-hand side a term Yb(t)lyl, so it is not ob-
vious any more that 1° holds and of course also 2° has to be proved.
Naturally this requires stronger assumption and this is inequality

(2.34) which now is supposed to hold for 1 € (O,no], N, >0 and

besides there is a constant mO < 4+ such that

(2.35) fJoxn(T)dT =m < 4 if 1 ¢ (o,nO].
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It is easy to give many specific condition on «,B and Yy such that
one of the cases discussed takes place. We restrict ourself to two

examples., In both we put P = 0. First let

(2.36) alt,y) = /(14 y])

- -1
that the first term in (2.34) is t l+€(hn) (1+]y|), and there-
fore if y 1is supposed to be linear in y, then the inequality

(2.34) holds for n >0, However,because of the term (Hq)_l, (2.35)

does not hold so we are in the case (A) assuming that (com-

pare (2.33))

(2-57) 1(6y) 2 Bo(1),

o integrable.

On the other hand if we put
1-€
(2058) a(t,y) = 1
then condition (B) holds if we assume

(2.39) Ht,5) 2 (t) + A ()] V]

where “o’Ko are integrable and possibly negative.
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Remark 2. Note that if Q in (2.1) does not depend on 2z then there

is no difference between the assumptions of Theorem 1 and 2, and they

coincide with the assumptions concerning P in the Lemma. There-
fore it follows from Theorem 2 that the following problem: minimize
x(b) 1in the class of absolutely continuous functions z = (X,y):
J = Z such that (a) x(a) =0, (b) y(a) = N y(b) =y, (c)
z(t) € P(t), admits an optimal solution provided P(t) satisfies the
assumptions of the Lemma.

In fact the above statement follows immediately from the
Lemmae. The only thing one has to prove is that a minimizing sequence

is bounded.

Fxample 2. The aim of this example is to show that the statement
in the above remark is no longer true if mc in the Lemma is
not integrable for some e¢. So let Z be the plane R2, P(t) a closed

and convex subset of R2 such that for each t e [0,1]

(2.40) P(t) N {(x,y) € R2l x £ 0} = ((0,0)}
(2.41) Cp(4) = ¢ = {{x,y)|y=0, x 2 0}

and

(2.42) max (-x + ny) =0, (t)

(x,y) € P(t)
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where 10 >0, n 0, wn(t) is positive, measurable but
fé$n(t)dt = + o, Finally assume that for each n = 1,2,... there
are measurable o ,B ~ such that (an(t),an(t)) € P(t) a.e. in

[0,1] and

(2.43) ~ap (t) + n B (t) =9 ().

Under these assumptions the class Q composed of all ab-
solutely continuous z: [0,1] SRz - (x,y), such that x(0) =0,
y(0) =0, y(1) =1 and z(t) € P(t) a. e. in [0,1] does not con-
tain an optimal solution.

Clearly © satisfies (I), (II), (III) and (IVb). From

(2.40) it follows that %(t) =2 0 a.e. in J for each (x,y) € Q.
Hence x(1) 2 O and the inf of I(Q) is non-negative. We shall

show that is is equal to zero. TFor that purpose let En<: J

be a measurable set such that IEEH(T)dT = 1. Such E_  exist,
Indeed, from (2.40), convexity of P(t) and the positivity of ¢,
it follows that both an(t) and Bn(t) are positive and if n <1
then also an(t) < Bn(t). Thus (2.24) and the nonintegrability of
¢ implies that ngn(t)dt = +w, which in turn yields the existence
of E . Moreover [ an(t)dt < 4o,

5

Let us put now Z (t) = (aq (),p (t)) if t eE and

(0,0) otherwise and zn(o) (0,0). Clearly z e Q. But from (2.4%)

ny (1) = 0 fp B (v)at

fE a (t)dt « fE ¢, (t)at
n n n
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Now n_ =0, an(t) and wn(t) are positive, and therefore fEnan(t)dt -0
as n oo, But [ o (t)at = x (1) = I(z_ ). Hence inf I(w) = O.
E ™n n n
n V3]
Suppose now that there is an w* € 0 such that I(w*) = 0. This
would imply that %*(t) =0 a.e. in [0,1] (w* = (x*,y*)). But,
since (&*(t),y*(t)) € & a.e. in [0,1], it follows from (2.40)
that  (%*(t),y(t)) = (0,0) a.e. in [0,1]. Hence y*(1l) =0 =
y*(0) which contradicts the fact that (x*,y*) € Q, and this com-
pletes the proof.

Notice that the sequence [zn] is convergent pointwise

to a discontinuous function and {yn} does not converge uniformly.

5. Existence Theorems: control system case.

In this section we proceed with the discussion of the optimal

control problem stated in the introduction.

Thus we consider a class Q of solutioms (J,y,u) of sys-
tem (0.1); that is, J is an interval, y: J -»Y is absolutely con-

tinuous, us J - E 1is measurable, and

(3.1) y(t) = £(t,y(t),u(t)), u(t) € U(t,y(t)) a.e. in J.

The cost function

(3.2) I(J3,y,u) = [;e(t,y(1),u(t))dt,

is a map I: @ - X.
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As before E, X and Y are Euclidean spaces. We assume that an order is
given in X such that the positive cone C 1is convex, closed, proper
and C-C = X. Our goal is to give conditions implying the existence of mini-
mal points of I(Q).

The following assumption will be imposed upon f,g and U

throughout this section

Assumption 1. The maps f: Jo XYXE-—->Y and g: JO XYXE =X
[a

measurable in t for each fixed (y,u) € Y X E. The map U:

"

b ] and

are both continuous in (y,u) for each fixed t € I L

Jo XY 2% is u.s.c. in both variables (tyy).
Concerning Q we assume the following conditions.
(1) 1If ((Jk’yk’uk)} C Q, (J,,¥you,) 1is a solution of (3.1) and if
(Jo¥) = (Jys¥y) uniformly then (J,,¥,,uy) € Q
(iia) There is an M >0 such that [y(t)]] =M for each (J,y,u) € Q
and t in J.

(iib) There is an M >0 such that for each (J,y,u) € & there is t
in J with |y(t)|| = M.
Put Z = X X Y, and define the scalar product (thus also

the norm) by
(3.3) < 29,25 > = <KXy >+ <Y,V >

where 1z, = (xl,yl), Z, = (X2’y2) are two points in Z and on the

right-hand side of (3.3) are the scalar preducts in X and Y,




37

respectively. 1In this way, we may identify X and Y with subspaces
X x {0} and {0} XY of Z, respectively. As before X and Y

are mutually orthogonal and Z = X & Y. We may consider also the

cone C as a cone in Z and thus extend the order to Z. How-
ever, note that (xl,yl) < (xg,yz) if and only if X, = x5

and ¥y = Vo The polar CO vof C in Z is then

(3.4 ¢ =14 = (dx,dy)l <d,a>50 foreach aeC,d cY)

Denote by h the map from JO XY XE into Z which
sends (t,y,u) into (g(t,y,u),f(t,y,u)). The map h satisfies
Assunmption 1.

The following two existence theorems correspond to Theorem

1 and Theorem 2 of the previous section.

Theorem 5. Suppose Assumption 1 holds. Assume that (1) the set

(5'5) Q(t,Y) ={q e Z| q 2 h(t’y)u)) u € U(t:y)}

is convex for each (t,y) e Jo XY, (ii) the map Q sending (t,y) into
Q(t,y) is u.s.c. in y for each fixed t, and (iii) for each d e int ¢°
and positive r there is on JO an integrable scalar valued function

@d(-,r) such that

(3.6) < d,h(t,y,u) > = @d(t,r) if ||yl = r and u e u(t,y).
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Under these assumptions each nonempty class £ of solutions

of (3.1) satisfying (i) and (iia) contains an optimal solution.

Theorem 4. In addition to all the assumptions of Theorem ! assume thet
either condition (A) or (B) of Theorem 2 holds for the function md(-,r)
in (3.6). Then each class Q satisfying (i) and (iib) contains an
optimal solution.
For the proof of the above theorems we will need the fol-
lowing extension of "Filippov's implicit function lemma" in

[3].

Proposition 4., ILet 1: J X E - Z be continuous in u € E for each

E

t € J and measurable in t € J for each u € E. lLet Ws J =2

be u.s.c. Define

(3.7) Q(t) = {zlz & i(t,u) u e W(t)}

and suppose there is a measurable z: J = Z such that

(3.8) z(t) € Q(t) a.e. in J,

Then there is a measurable u: J - E such that

(3.9) z(t) 2 i(t,u(t)) and wu(t) € W(t) a.e. in J.
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We shall only sketch the proof of Proposition 5. It is
in fact very much like the case when in both (3.7) and
(3.9) the inequality is replaced by equality. In the latter case
the result is known (cf. [5] and [6]). |

The function u: J —=E, we wish to prove the existence of,

is to have the property
(3.10) u(t) € V(t) = {u e wW(t)|i(t,u) = z(t))

In other words u 1is to be a measurable selection for the set valued func-
. E
tion V: J =2, Such a selection does exist if V is itself measur-

able; that is, if for each closed F C E, the set
(3.11) VFE = {t|v(t) N F # @} is measurable,

(ef. [19]). Now (3.11) is true if one shows it is true for each compact
F, since each closed F =UF, where F_ are compact and V-(UFk) =
U(V_Fk). The set (3.11) is closed when F 1is compact if i

and z in (3.10) are continuous. This is so because the positive

cone is closed and therefore the inequality is preserved in the

limit. If 1 and z in (3.10) are not continuous but satisfy the
assumption of Proposition 4, then for each € >0 there is a

closed subset K C J such that the measure p(J\K) <€, and =z
restricted to K and i restricted to K X E are both continuous.

The first is the celebrated Lusin's theorem, the second is an
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extension of a result due to Scorza Dragoni [ecf. Jacobs, [6] Corollary
2.3]. But this means that the set (3.11) can be approximated as closely

as desired by a closed set. Hence 1t is measurable.

Proof of Theorem % and 4, Consider the orientor field

(3.12) z(t) € Q(t,y(t))

where @Q is given by (3.5). Let 0 be the set of solutions of
(3.12) such that (J,x,y) € & if and only if x(a) = O,

Now there is a measurable u: J - E such that (J,y,u) satisfies
(3.1) and belongs to . If (J,y,u) € Q, and x(t) = f:g(T,y(T),u(T))dT,
then it is clear that (J,x,y) € @ since %(t) + y(t) = h(t,y(t),u(t)) €
Q(t,y(t)). Thus we have an e: 0 =0 which maps (J,y,u) = (J,x,y)

where x(t) is defined as above. This map has the property

(3.13) I(w) = I(e(w)) for each w € Q,

where I: 1 »>X and I(J,x,y) = x(b).

On the cther hand by Proposition 4 for each ® = (J,x,y) € Q
there is a measurable wu: J = E such that (3.9) holds, where
i(t,u) = h(t,y(t),u) = (e(t,y(t),v),f(t,y(t),u)) and W(t) =

U(t,y(t)). But the first inequality of (3.9) means that
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7(t) = £(t,y(t),u(t)) and %(t) = g(t,y(t),u(t). Thus (J,y,u) is
a solution of (3.1) belonging to Q and x(b) 2 fJg(t,y(t),u(t))dt‘
Hence §I can be mapped into 0, say by a map E, with the property

that
(3.14) I(S(w)) £ T(w) for each w e T,

It follows from (3.13) and (3.14) that each minimal point of TI(0)

is a minimal point of I(Q). Indeed, let p € () be minimal.

By S
v

-+

aw

(3.14h) there is

&)
V2t \

S

g 3 £ p. We clalm that g =p

and q is minimal for I(Q). Let q, € I(Q) and q, £4a

»

A

Then by (3.13) q € I(%) and q; £a =p. But p is minimal, and hence
q, = p. Therefore q, =g =p and g is minimal for ().

In order to prove Theorem 3 (or 4) it suffices to show
that I and Q defined by (3.5) satisfy the conditions of Theorem 1
(or 2). By definition, § satisfies (I) and (II). Condition (III)
follows easily from (i) and Proposition 4. Finally (IVa) and (IVb)
follow from (iia) and (iib), respectively.

The assumption (2.4) concerning Q 1is readily satisfied
since Q@ depends only on y and doés not depend on x. Q 1is
u.s.c. by assumption. It is clear by (3.5) that the asymptotic cone
CQ(t,y) contains C. Suppose that for some (t,y) the cone C is

a proper subset of C and let a € C \C. Then there is
Q(t,Y)

a(t,y)
d e int ¢° such that <d, a >>0. But for each g € Q(t,y) and

A >0, g+ha € Q(t,y). This and (3.5) contradict (3.6).
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Hence (2.3) holds. Finally (2.5) follows from (%.6) and (3.5),and con-
ditions (A) and (B) are the same in both Theorem 2 and Theorem k.
Thus the proof is completed.

Remark 1. It follows from Assumption 1 that any change of either £

or g or both (and thus also @ defined by (3.5)) on a set
NXYXE where N CZJo has measure zero is irrelevant and does
not effect the conclusion of both Theorem 3 and 4. On the

other hand from Proposition 1', it follows that 1f Q 1is defined
by (3.5) and ©_(t,r) with (t,r) fixed is finite for d froma dense

subset of int CO, then it has to be finite for each d ¢ int c®.
Therefore there is no loss of generality from assuming that (3.6) holds
everywhere in J or that wd(t,r) is finite for each t (compare this

with the Corollary of Sec. 2).

Remark 2. The purpose of this remark is to contrast our Theorem 3
and 4 with Cesari's analogous result [1, Existence Theorem I, p.
390]. For that purpose the reader can think about X being one !
dimensional, C as positive half x-axis in Z, int c® = {(x,y) € Z|x <0}.
This is indeed the case considered by Cesari. In the case correspond-
ing to Theorem 3 (9 satisfies (iia)), Cesari assumes the so-called
"growth condition" on each bounded subset of Y, that is, for each
bounded subset B of Y there existsa continuous function Qs R+ - R
such that o(¢)/f -~ as § —»» and two positive constants G,H

such that g(t,y,u) = o([lul) and [I£(t,y,w)ll = G+Hlul for (t,y) €

JXB and u € U(t,y). It is easy to check that this implies (3.6)




. . . . [0}
with @, independent of t. Indeed, if d € int C7, d = (dx,dy)
then dxq(t,y,u) + < dy,f(t,y,u) > < +dx®(HuH) + deH(G+H“uH)

(remember that dX < 0). Since the latter sum tends to -« as lu] — +oo,

it is bounded from above. The assumptions concerning the set @
are the same with the exception that Cesari assumed condition (2.8)
with respect to both variables while we assume Q 1s u.s.c. in a
weaker sense and only with respect to one variable., Similarly £
and g are also assumed in [1] to be continuous in t.

Concerning the unbounded case (condition (iib)), besides the
growth condition it is assumed in [1] that there are constants Gy

and H; such that g(t,y,u) 2 Gluf(t,y,u)u if |yl > 8, ue U(t,y).

1
Those two conditions imply that the function ¢, in (3.6) can be

taken as constant if d = (ndx,d ) d <0, and 1 is small enough.

y
Therefore this is taken care of by our Theorem 4 case (A). There

is no counterpart in [1] to our Theorem 4 case (B). In other words
Cesari always assumes 'almost explicitly' an a priori bound for the
infimum of the cost functional.

As follows from the proof of Theorem 2 (see also the dis-
cussion of the example in section 2) conditions(A) and (B) arc to
guarantee that the subclass Q_ = (we 9 I(w) = I(wo)} of @
satisfying (IVb) (or (iib)) satisfies (IVa). This can be assured
by different kind of conditions not connected with the bound in (3.6).
These are the typesof conditions which supply an a prioril bound

for a solution of (3.1) satisfying a fixed initial condition (in-

dependent of g). We omit details here.
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Example. The problem we considered contains as a special case the classi-

cal Lagrange problem in the calculus of variations, which corresponds

to the case when f(t,y,u) = u and U(t,y) = E = Y. The convexity

of the set Q(t,y) is now equivalent to convexity of g in wu. An

extension of the existence theorems of Nagumo [15], McShane [12], and Tonelli [16]
can be formulated. However we restrict ourselves to an example

related to the examples at the end of section 2.

Suppose we wish to minimize the functional
t .2
(3.15) JLodt,y(£))y () + v(t,y(t)) Jat

in the class @ of absolutely continuous funection satisfying

the boundary value condition:

(%.16) y(o) =1 y(t) =0 , t =1,

If oft,y) =t and y =0, an optimal solution does not exist.
In fact in this case the bound in (3.6) (compare with (2.32)) is a constant

times t_l and therefore is not integrable (cf. Example 2 of Section 2).

tl-e

However, if o 2 s then an optimal solution exists even with

(t,y) = Yb(t) + Yi(t)y provided that both v, and 71, are inte-

grable on [O0,1].
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